Hard battles and easy victories in robustifying NLP models

He He

RobustSeq Workshop

December 2, 2022

Riveting film of the highest calibre !Thank God I didn't go to the cinema.Definitely worth the watch !Boring as hell.A true story told perfectly !I wanted to give up in the first hour	abe = +1	abe = -1
	8	8

Riveting film of the highest calibre !Thank God I didn't go to the cinema.Definitely worth the watch !Boring as hell.A true story told perfectly !I wanted to give up in the first hour	abe = +1	abe = -1
	Definitely worth the watch !	Boring as hell.

Two equally good hypotheses:

- Predict +1 if the input ends with "!"
- Predict +1 is the input gives a positive recommendation

	abe = +1	abe = -1
Riveting film of the highest calibre !Thank God I didn't go to the cinema.Definitely worth the watch !Boring as hell.A true story told perfectly !I wanted to give up in the first hour	Definitely worth the watch !	Boring as hell.

Two equally good hypotheses:

- Predict +1 if the input ends with "!"
- Predict +1 is the input gives a positive recommendation

Riveting film of the highest calibre !Thank God I didn't go to the cinema.Definitely worth the watch !Boring as hell.A true story told perfectly !I wanted to give up in the first hour.	abe = +1	abe = -1
	o	8

Two equally good hypotheses:

- Predict +1 if the input ends with "!"
- Predict +1 is the input gives a positive recommendation

abe = +1	abe = -1
Riveting film of the highest calibre !	Thank God I didn't go to the cinema.
Definitely worth the watch !	Boring as hell.
A true story told perfectly !	I wanted to give up in the first hour

Two equally good hypotheses:

- Predict +1 if the input ends with "!"
- Predict +1 is the input gives a positive recommendation

Distribution shift due to perturbation of the spurious feature: Complete waste of two hours of my time! +1/-1?

abe = +1	abe = -1
Riveting film of the highest calibre !	Thank God I didn't go to the cinema.
Definitely worth the watch !	Boring as hell.
A true story told perfectly !	I wanted to give up in the first hour

Two equally good hypotheses:

- Predict +1 if the input ends with "!"
- Predict +1 is the input gives a positive recommendation

Distribution shift due to perturbation of the spurious feature:

Complete waste of two hours of my time! +1/-1?

Models may not generalize as expected in deployment domains

Real examples

Biases in NLP datasets:

- NLI: negation words → contradition [Poliak et al., 2018]
- **NLI**: lexical overlap \rightarrow entailment [McCoy et al., 2019]
- **Paraphrase identification**: lexical overlap \rightarrow paraphrase [Zhang et al., 2019]
- **QA**: lexical overlap \rightarrow answer sentence [Jia and Liang, 2017]
- **Co-reference**: gender → occupation [Zhao et al., 2018]

Large performance drop on OOD data where the simple heuristic fails

Challenges

What assumption should we make about spurious features (in language data)?

- $p(y \mid x)$ should be invariant to perturbations of the spurious feature
- The label should be independent of the spurious feature
- The learned representation should not contain information about the spurious feature

Recipe: assumptions \rightarrow objective \rightarrow optimization

Common assumptions may not apply to certain spurious featurs in NLP data

Some spurious features are irrelevant

The simple case: spurious features and core features are disentangled

• Changing the spurious feature doesn't affect label

Some spurious features are irrelevant

The simple case: spurious features and core features are *disentangled*

• Changing the spurious feature doesn't affect label

Spielberg's new film is brilliantpositiveZhang's new film is brilliantpositive

Some spurious features are irrelevant

The simple case: spurious features and core features are *disentangled*

• Changing the spurious feature doesn't affect label

Spielberg's new film is brilliant po Zhang's new film is brilliant po

positive positive

water \rightarrow waterbird

$land \rightarrow waterbird$

Some spurious features are necessary for prediction

The complex case: spurious features are part of the core features

• The "spurious" feature is necessary but not sufficient for prediction

Some spurious features are necessary for prediction

The complex case: spurious features are part of the core features

- The "spurious" feature is necessary but not sufficient for prediction
- I love dogs/I don't love dogscontradictionI love dogs/I don't love catsneutral

stripes \rightarrow zebra

stripes \rightarrow crosswalk

Two ways for a word to associate with the label

[Joshi et al., 2022]

- C: the review writer
- Y: sentiment
- Titanic has no causal relation with Y
- But they may be correlated through *C*: famous movies tend to receive good reviews

The spurious feature is **irrelevant** to predicting the label.

Two ways for a word to associate with the label

- *C*: the review writer
- Y: sentiment
- not causally affects Y

The spurious feature is **necessary** to predicting the label.

Categorize spurious features

A feature is **spurious** if it is **not sufficient** for predicting the label.

But it may be necessary for prediction:

Irrelevant	Necessary
Titanic is great	l don't like the movie

Categorize spurious features

A feature is **spurious** if it is **not sufficient** for predicting the label.

But it may be necessary for prediction:

Irrelevant	Necessary
Titanic is great	l don't like the movie
Has no causal relation with the label Model should be invariant to them	Causally affect the label Model should be sensitive to them

More common in NLP (messier...)

How well do existing methods work on different types of spurious features?

loshi*. Pan*. He. Are All Spurious Features in Natural Language Alike? An Analysis through a Causal Lens. EMNLP 2022.

• Dataset: MNLI

• Model: finetuned RoBERTa-Large

- Dataset: MNLI
- Model: finetuned RoBERTa-Large
- Spurious features:
 - **Irrelevant**: adding !! to the end of neutral The kids are playing football. The kids are shouting!! (neutral)
 - **Necessary**: lexical overlap and entailment [McCoy et al., 2019] The woman is selling sweets to the kids. The woman is selling sweets. (entailment)
- Methods:
 - Data balancing through subsampling
 - Representation debiasing

Data balancing

Assumption: the label should be independent of the spurious feature

Method: subsample the data s.t. label is independent of the feature [Sagawa et al., 2020; *i.a.*]

high overlap examples

Does the model generalize well if the spurious feature is *independent* of the label?

Breaking the spurious correlation is not enough

ID	OOD
high overlap	low overlap
has punctuation	no punctuation
y ⊥⊥ x _{spurious}	

Takeaway: feature-label independence leads to

- good OOD performance for irrelevant features
- but we still see large ID-OOD performance gap for necessary features

Effect of data balancing

Irrelevant spurious features:

- Breaking the correlation allows the model to learn the core features
- Core features are the same with and without the spurious feature

Effect of data balancing

Irrelevant spurious features:

- Breaking the correlation allows the model to learn the core features
- Core features are the same with and without the spurious feature

Necessary spurious features:

- Core features vary with the spurious feature
- The model encounters new/rare features on OOD examples

What if we remove spurious features from the learned representation?

Takeaway: removing spurious features

- does not affect task accuracy for irrelevant features
- but degrades task accuracy for necessary features

Joshi*, Pan*, He. Are All Spurious Features in Natural Language Alike? An Analysis through a Causal Lens. EMNLP 2022.

Summary so far

What assumption should we make about spurious features (in language data)?

- The nice setting: we know the spurious feature, and it is irrelevant to prediction
 - Break the feature-label correlation (subsampling, reweighting, invariance etc.)

Summary so far

What assumption should we make about spurious features (in language data)?

- The nice setting: we know the spurious feature, and it is irrelevant to prediction
 - Break the feature-label correlation (subsampling, reweighting, invariance etc.)
- The real setting: we don't know the spurious feature, there are many of them, and they may be necessary for prediction
 - Existing independence or invariance assumptions do not apply
 - Learn patterns on the long tail

Next, what's the role of pretraining in robust language understanding?

Robustness in the era of large language models

10:53 PM · Nov 3, 2022 · Twitter Web App

Supervised learning \rightarrow zero-shot / in-context learning

- What's the underlying distribution shift?
- What's the inductive bias of pretraining and prompting?

Our study: Is in-context learning robust to spurious correlations in the demonstration?

• **Prompt** with spurious correlation:

Input: Riveting film of the highest calibre ! Label: +1 Input: Thank God I didn't go to the cinema. Label: -1 Input: Definitely worth the watch ! Label: +1 Input: Boring as hell. Label: -1

• **Prompt** with spurious correlation:

Input: Riveting film of the highest calibre ! Label: +1 Input: Thank God I didn't go to the cinema. Label: -1 Input: Definitely worth the watch ! Label: +1 Input: Boring as hell. Label: -1

• Features: semi-synthesized spurious features (punctuation, n-grams etc.)

• **Prompt** with spurious correlation:

Input: Riveting film of the highest calibre ! Label: +1 Input: Thank God I didn't go to the cinema. Label: -1 Input: Definitely worth the watch ! Label: +1 Input: Boring as hell. Label: -1

- Features: semi-synthesized spurious features (punctuation, n-grams etc.)
- Metric 1: gap between bias-support and bias-countering examples on test set Input: A story told perfectly! Label: Input: Complete waste of time! Label:

• **Prompt** with spurious correlation:

Input: Riveting film of the highest calibre ! Label: +1 Input: Thank God I didn't go to the cinema. Label: -1 Input: Definitely worth the watch ! Label: +1 Input: Boring as hell. Label: -1

- Features: semi-synthesized spurious features (punctuation, n-grams etc.)
- Metric 1: gap between bias-support and bias-countering examples on test set Input: A story told perfectly! Label: Input: Complete waste of time! Label:
- Models: Curie (13B), Davinci (175B, original GPT-3)

Is in-context learning robust to biases in the demonstration? [Si et al., 2022]

Controlling the strength of prompt bias:

- Prevalence: % examples with the spurious feature
- Strength: $p(y | x_{spurious})$

Is in-context learning robust to biases in the demonstration? [Si et al., 2022]

Controlling the strength of prompt bias:

- Prevalence: % examples with the spurious feature
- Strength: $p(y | x_{spurious})$

- GPT-3 suffers from **extreme bias** in the prompt, but less so under **weaker bias**.
- The larger model seems to infer the intended task even under extreme bias

Is in-context learning robust to biases in the demonstration?

What's the effect of prompt engineering?

Input: Riveting film of the highest calibre ! Label: positive Input: Thank God I didn't go to the cinema. Label: negative

Using verbalized labels helps the model learn the target task to some extent

Is in-context learning robust to biases in the demonstration?

What if we give it more in-context examples?

• Still with uninformative labels (0/1) and extreme bias (100% predictive)

- More (biased) examples help the model infer the intended task
- which is different from supervised learning

Summary so far

- Scaling up LLMs improve robustness without explicit assumptions about the spurious features
- They are still susceptible to spurious correlations in the demo examples
- But proper prompt design can mitigate the problem by informing the model of the intended task

Parting remarks

Takeaways:

- Tackling all sorts of spurious features in NLP tasks is a hard battle
- Pretraining and scaling have consistently improved model robustness so far

Open questions:

- What is OOD wrt to pretraining (long-tail events, human biases)?
- How does prompting or in-context learning work?
- How does human interaction / feedback help?

Collaborators

Thank you!