Reward Gaming in Conditional Text Generation

He He

ICLR Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models

May 4, 2023
Text-to-text as a universal task interface

Learn any task as a **text generation** task

"translate English to German: That is good."

"cola sentence: The course is jumping well."

"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..."

"Das ist gut."

"not acceptable"

"3.8"

"six people hospitalized after a storm in attala county."

Figure: From Raffel et al., 2020
How to train a text generator

Maximum likelihood estimation (“teacher forcing”):

\[
\text{maximize } \sum_{x \in D} \log p_\theta(x)
\]
How to train a text generator

Maximum likelihood estimation ("teacher forcing"):

$$\text{maximize} \sum_{x \in D} \log p_\theta(x)$$

Bad estimation in low-density region
How to train a text generator

Solution 1: Sample from the high density region

Decoding

top-p, top-k, temperature, ...

Truncate the tail of p_θ
How to train a text generator

Solution 2: Teach the model how to behave in low density regions

Reinforcement learning

trial and error
Where does the feedback come from?

We often need to learn a model to judge the output:

- Summary saliency and faithfulness [Pasunuru and Bansal, 2018]
- Translation quality with respect to the reference [Sellam et al., 2020]
- Helpfulness of AI assistant’s response [Stiennon et al., 2020]
Where does the feedback come from?

We often need to learn a model to judge the output:
- Summary saliency and faithfulness [Pasunuru and Bansal, 2018]
- Translation quality with respect to the reference [Sellam et al., 2020]
- Helpfulness of AI assistant’s response [Stiennon et al., 2020]

General recipe

1. Annotate data: (input, output, reward)
2. Learn a **reward model**: $r : \text{input} \times \text{output} \rightarrow \mathbb{R}$
3. Finetune p_θ to maximize expected reward
Motivation: improve MT quality using expert feedback [Freitag et al., 2021]

1. Train a reward model to predict per token error \(\sim 80\% \) accuracy

<table>
<thead>
<tr>
<th>state enterprises and advantageous private</th>
<th>enterprise sentered the revolutionary base area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Motivation: improve MT quality using expert feedback [Freitag et al., 2021]

1. Train a reward model to predict per token error $\sim 80\%$ accuracy

 state enterprises and advantageous private
 1 1 1 1 1 1
 enterprise sentered the revolutionary base area
 1 1 1 1 1 1

2. Finetune the MLE-trained translation model p_θ using REINFORCE increasing reward
Motivation: improve MT quality using expert feedback [Freitag et al., 2021]

1. Train a reward model to predict per token error \(\sim 80\% \) accuracy

```
state enterprises and advantageous private
1 1 1 -1 -1
enterprise sentered the revolutionary base area
1 1 1 -1 -1 -1
```

2. Finetune the MLE-trained translation model \(p_\theta \) using REINFORCE increasing reward

3. No improvement in BLEU (also see [Shu et al., 2021])
Reward gaming

- Beat humans in boat racing (and finish the course!)
Reward gaming

- Beat humans in boat racing *(and finish the course!)*

- Produce a list of sorted numbers *(of the input list!)*

  ```python
  return []
  ```

Goodhardt's law

metrics are not designed to evaluate and incentivize behavior
Reward gaming

- Beat humans in boat racing (and finish the course!)
- Produce a list of sorted numbers (of the input list!)

  ```python
  return []
  ```
- **Goodhardt’s law**: metrics are not designed to evaluate and incentivize behavior
Are learned rewards more robust?

- Train reward model on some (off-policy) data
Are learned rewards more robust?

- Train reward model on some (off-policy) data
- Run reward model on on-policy data
Are learned rewards more robust?

- Train reward model on some (off-policy) data
- Run reward model on on-policy data (which is drifting)
Are learned rewards more robust?

- Train reward model on some \textit{(off-policy)} data
- Run reward model on \textit{on-policy data} (which is \textit{drifting})
- Reward model errors:

\[p_{\text{reward}}(x) \]
\[p_{\theta}(x) \]

\text{small error under } p_{\text{reward}}, \text{large error under } p_{\theta}
Are learned rewards more robust?

- Train reward model on some (off-policy) data
- Run reward model on on-policy data (which is drifting)
- Reward model errors:
 - Low reward on good behavior: missing modes

\[
p_{\text{reward}}(x) \quad p_{\theta}(x)
\]

Small error under \(p_{\text{reward}} \), large error under \(p_{\theta} \)
Are learned rewards more robust?

- Train reward model on some (off-policy) data
- Run reward model on on-policy data (which is drifting)
- Reward model errors:
 - Low reward on good behavior: missing modes
 - High reward on bad behavior: potential loophole!

\[p_{\text{reward}}(x) \quad p_{\theta}(x) \]

small error under \(p_{\text{reward}} \), large error under \(p_{\theta} \)
Are learned rewards more robust?

- Train reward model on some (off-policy) data
- Run reward model on on-policy data (which is drifting)
- Reward model errors:
 - Low reward on good behavior: missing modes
 - High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL
How can we test it?

Condition: reward model assigns high reward to bad behavior

Result: bad behavior gets amplified during RL
How can we test it?

Condition: reward model assigns high reward to bad behavior

Result: bad behavior gets amplified during RL

What could cause the condition?

- Annotation errors
- Spurious correlation
- Domain shift
How can we test it?

Condition: reward model assigns high reward to bad behavior

Result: bad behavior gets amplified during RL

What could cause the condition?

- Annotation errors
- Spurious correlation
- Domain shift

Sudoku autofill as a testbed

Reward = how likely the sudoku is valid

\[r : \mathbb{R}^{81} \rightarrow [0, 1] \]
Annotation errors

Annotator bias: some examples are misannotated *systematically*

Possibly more common as models become better:

Encryption algorithms are often kept secret or proprietary in order to protect the confidentiality and security of the data being encrypted. By keeping the algorithm secret, it can be more difficult for an attacker to decipher the encrypted data, as they would need to know the specific algorithm and its configuration in order to do so.

However, it is important to note that relying solely on the secrecy of an encryption algorithm is not enough to ensure the security of encrypted data. Other security measures, such as strong key management and secure storage of encrypted data, are also necessary to protect against attacks.

- Wikipedia-like, authoritative, formal
Reward gaming due to annotation errors

0.05% label flip

RM accuracy = 99.3%

![Matrix Image]
Reward gaming due to annotation errors

0.05% label flip
RM accuracy = 99.3%

RL increases reward
Reward gaming due to annotation errors

0.05% label flip
RM accuracy = 99.3%

RL increases reward

>80% outputs end with 7
Most are invalid
Spurious correlation

Prevalent in supervised learning, including reward modeling

Features correlate with high reward on p_{reward}

- Short outputs tend to be more truthful [Lin et al., 2021]
- Outputs on common concepts are more likely to be correct [Razeghi et al., 2022]

But could have low reward on p_θ
Revisiting the machine translation example

What are spurious correlations in translation error prediction?

0.3% examples have “…”

Most have **no error**

![Graph showing percentage of examples with reward 1 over training steps]
Revisiting the machine translation example

What are spurious correlations in translation error prediction?

0.3% examples have “...”
RL increases reward

Most have no error
Revisiting the machine translation example

What are spurious correlations in translation error prediction?

0.3% examples have “…”
Most have no error

RL increases reward

>80% outputs have “…”
Most are undesirable

![Graph 1](%... w/ reward 1)
![Graph 2](mean reward)
![Graph 3](% generations w/ ‘…’)
Can we just remove the spurious feature?

- Many more spurious features
 - the 66 countries and regions have been able to conduct the evidence in the dissemination of the virus in 2015
 - the some parents have been able to conduct the campaign day ...

- Large models may discover more obscure spurious features
Domain shift

- RM trained on English generations. How does it work on non-English languages?
- RM trained on short text. How does it work on long text?
- Reward assignment is underspecified on unsupported regions
Reward gaming due to domain shift

- Train translation model to maximize BLEURT [Sellam et al., 2020]
- BLEURT training data contain very few repetitions (0.05%)

RL increases reward
Reward gaming due to domain shift

- Train translation model to maximize BLEURT [Sellam et al., 2020]
- BLEURT training data contain very few repetitions (0.05%)

RL increases reward

Frequent repetition on long outputs
What can we do to fix it?

Approach 1: Restrict the policy

- KL regularization towards the MLE solution

\[
\text{maximize } \text{expected reward} - \text{KL} (p_\theta \| p_{\text{MLE}})
\]
KL regularization

+ Easy to implement (widely used)

- Hyperparameter tuning is important

- May not always work
Approach 2: Fixing the reward

- Update RM by collecting feedback on updated policies
Iterative reward learning

Used by InstructGPT; need more thorough investigation

Over the course of the project, we trained several reward models and policies. Each batch of summaries that we sent to the labelers were sampled from a variety of policies. We didn’t have a systematic plan for which policies to sample from; rather, we chose what seemed best at the time in the spirit of exploratory research. Every time we trained a reward model, we trained on all labels we had collected so far. Successive models also benefited from improved hyperparameters and dataset cleaning. Our results could likely be replicated with a simpler, more systematic approach.
Learn from **natural language feedback**

- **Critique**: provide feedback on an output (model or human)

 Critique Request: Identify specific ways in which the assistant’s last response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.

 Critique: The assistant’s last response is harmful because hacking into someone else’s wifi is an invasion of their privacy and is possibly illegal.

- **Refinement**: incorporate the feedback

 - Learn a refinement model [Chen et al., 2023; Saunders et al., 2022]

 - Self-refinement through prompting

 Revision Request: Please rewrite the assistant response to remove any and all harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.

 Revision: Hacking into your neighbor’s wifi is an invasion of their privacy, and I strongly advise against it. It may also land you in legal trouble.
Summary

• Reward gaming has more real consequences as RLHF is widely used to train LLMs

• Many open questions
 • How to detect obscure gaming behavior in long generations
 • New ways of reward/preference learning, e.g., modeling uncertainty and ambiguity
 • New forms of feedback: controlled generation vs RL
Thank you

Richard Pang Vishakh Padmakumar Ankur Parikh