A systematic analysis of chain-of- thought reasoning in LLMs

He He

Joint work with Abulhair Saparov

IBM Neuro-Symbolic AI Workshop
January 25, 2022
CoT: interpretable proof steps in natural language

Showing the model how to reason improves performance significantly

Figure: [Wei et al., 2022]
Lots of questions on how LLMs reason:

- Is the answer provable from the generated CoT?
- Does the reasoning ability depend on real-world knowledge?
- What deduction rules are used?
- What mistakes do they make?

Need to inspect the generated CoT in addition to the label accuracy
PrOntoQA: a synthetic QA dataset for reasoning

Structure of an example (including CoT):

Q: Each cat is a carnivore. Every carnivore is not herbivorous. Carnivores are mammals. All mammals are warm-blooded. Mammals are vertebrates. Every vertebrate is an animal. Animals are multicellular. Fae is a cat. True or false: Fae is not herbivorous.

A: Fae is a cat. Cats are carnivores. Fae is a carnivore. Every carnivore is not herbivorous. Fae is not herbivorous. True

Key features:

- **Parseable:** easy to convert between CoTs and formal proofs
- **Programmable:** easy to vary the degrees of complexity of the examples
Generative process of the dataset

Step 1: Generate ontology

- animal
- multicellular
- vertebrate
- mammal
- warm_blooded
- carnivore
- ~herbivorous
- cat

Step 2: Generate proof from ontology

\[
\begin{align*}
\text{Ax} & \quad \text{cat}(fae) \quad \forall x (\text{cat}(x) \rightarrow \text{carnivore}(x)) \\
\text{Ax} & \quad \text{carnivore}(fae) \\
\text{Hop} & \quad \forall x (\text{carnivore}(x) \rightarrow \neg \text{herbivorous}(x)) \\
\text{Ax} & \quad \neg \text{herbivorous}(fae)
\end{align*}
\]

Step 3: Translate ontology to natural language context

“Q: Each cat is a carnivore. Every carnivore is not herbivorous. Carnivores are mammals. All mammals are warm-blooded. Mammals are vertebrates. Every vertebrate is an animal. Animals are multicellular.”

Step 4: Translate proof into query, chain-of-thought, and label

“Fae is a cat. True or false: Fae is not herbivorous.
A: Fae is a cat. Cats are carnivores. Fae is a carnivore. Every carnivore is not herbivorous. Fae is not herbivorous. True”

• Examples are translated from the ontology and a proof
• Only using **modus ponens**: given “All cats are carnivores” and “Fae is a cat” we conclude “Fae is a carnivore”.

\[
\frac{\text{Ax} \quad \forall x (\text{cat}(x) \rightarrow \text{carnivore}(x))}{\text{Ax} \quad \text{carnivore}(fae)}
\]

\[
\frac{\text{Ax} \quad \forall x (\text{carnivore}(x) \rightarrow \neg \text{herbivorous}(x))}{\text{Ax} \quad \neg \text{herbivorous}(fae)}
\]
Evaluating CoTs

For each proof step in the CoT, we ask

- **Validity**: Is it provable from previous steps?
Evaluating CoTs

For each proof step in the CoT, we ask

- **Validity**: Is it provable from previous steps?
 - **Strictly valid**: provable using modus ponens
 - **Broadly valid**: provable using additional deduction rules
 - Cats are carnivores; Carnivores are mammals
 - \Rightarrow Cats are mammals

- **Invalid**: otherwise
Evaluating CoTs

For each proof step in the CoT, we ask

- **Atomicity**: Is it provable with exactly one application of a deduction rule?
For each proof step in the CoT, we ask

- **Atomicity**: Is it provable with exactly one application of a deduction rule?
 - **Atomic**: needs one application of the deduction rule
 - **Non-atomic**: otherwise (all broadly valid steps are non-atomic)

 Fae is a cat. (Cats are carnivores.)
 \[\implies\] Fae is a carnivore.
Evaluating CoTs

For each proof step in the CoT, we ask

- **Utility**: Does it lead to a useful conclusion?
Evaluating CoTs

For each proof step in the CoT, we ask

- **Utility**: Does it lead to a useful conclusion?

- **Misleading**: the conclusion is not in the gold proof

 Query: *Fae is* not herbivorous.

 Carnivores are not herbivorous.

 Fae is a carnivore.

 Every carnivore is a mammal

- **Correct**: otherwise
Experiment setup

- **Models**: text-ada-001, text-babbage-001, text-curie-001, davinci, text-davinci-001, text-davinci-002

- **Decoding**: greedy decoding

- **Data**: we control the complexity of the problem through the following variables
 - **Number of hops**: 1, 3, 5
 - **Ontology type**:
 - Fictional: *zumpuses are wumpuses*
 - False: *cats are herbivorous*
 - True: *cats are mammals*
Is label accuracy correlated with proof accuracy?

- **Strict proof accuracy**: every step is strictly-valid, atomic, correct (i.e. *canonical*)
- **Valid proof accuracy**: every step is strictly- or broadly-valid (can be non-atomic or misleading)
Is label accuracy correlated with proof accuracy?

- **Strict proof accuracy**: every step is strictly-valid, atomic, correct (i.e. *canonical*)
- **Valid proof accuracy**: every step is strictly- or broadly-valid (can be non-atomic or misleading)
- Each dot is one experiment we ran.

Label accuracy largely correlates with **valid proof accuracy**
How does model size affect reasoning capability?

Only text-davinci-002 (davinci+RLHF+code?) can do our task at a reasonable accuracy.
Proof accuracy vs number of hops

Long proofs are still challenging
Real-world knowledge helps reasoning: fictional ≈ false ≪ true
How do LLMs reason step-by-step?

- The majority of proof steps are canonical (93.2%)
- We break down proofs by the type of non-canonical steps they use
- Each bar denotes the proportion of proofs that contain a step of that particular type
How do LLMs reason step-by-step?

LLMs tend to **skip steps**, just as humans do when verbalizing their reasoning.
How do LLMs reason step-by-step?

Most incorrect proofs contain misleading or invalid steps
What leads to a mistake?

Break down of incorrect proofs by the first non-canonical step

- Smaller models suffer from invalid steps and skipping steps
- Larger models suffer most from misleading steps
Example incorrect proof

Context: Every jompus is cold. Every jompus is a wumpus. Wumpuses are happy. Wumpuses are numpuses. Every numpus is not fruity. Every numpus is a dumpus. Every impus is fruity.

Query: Alex is a jompus. True or false: Alex is fruity.

Predicted answer:

Gold answer:
Example incorrect proof

Context: Every jompus is cold. Every jompus is a wumpus. Wumpuses are happy. Wumpuses are numpuses. *Every numpus is not fruity.* Every numpus is a dumpus. Every impus is fruity.

Query: Alex is a jompus. True or false: Alex is fruity.

Predicted answer: Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus. Wumpuses are numpuses. *Alex is a numpus.*

Gold answer: Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus. Wumpuses are numpuses. *Alex is a numpus.*
Example incorrect proof

Context: Every jompus is cold. Every jompus is a wumpus. Wumpuses are happy. Wumpuses are numpuses. *Every numpus is not fruity. Every numpus is a dumpus.* Every impus is fruity.

Query: Alex is a jompus. True or false: Alex is fruity.

Predicted answer: Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus. Wumpuses are numpuses. *Alex is a numpus. [wrong turn] Every numpus is a dumpus.*

Gold answer: Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus. Wumpuses are numpuses. *Alex is a numpus. Every numpus is not fruity.*
Context: Every jompus is cold. Every jompus is a wumpus. Wumpuses are happy. Wumpuses are numpuses. *Every numpus is not fruity. Every numpus is a dumpus.* Every impus is fruity.

Query: Alex is a jompus. True or false: Alex is fruity.

Predicted answer: Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus. Wumpuses are numpuses. *Alex is a numpus.* [wrong turn] Every numpus is a dumpus. [invalid] Dumpuses are impuses.

Gold answer: Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus. Wumpuses are numpuses. *Alex is a numpus.* Every numpus is not fruity. Alex is not fruity. False
Context: Every jompus is cold. Every jompus is a wumpus. Wumpuses are happy. Wumpuses are numpuses. Every numpus is not fruity. Every numpus is a dumpus. Every impus is fruity.
Query: Alex is a jompus. True or false: Alex is fruity.
Predicted answer: Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus. Wumpuses are numpuses. Alex is a numpus. [wrong turn] Every numpus is a dumpus. [invalid] Dumpuses are impuses. Alex is an impus. Impuses are fruity. Alex is fruity. True
Gold answer: Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus. Wumpuses are numpuses. Alex is a numpus. Every numpus is not fruity. Alex is not fruity. False
What we know about CoT reasoning:

- Answers are indeed derived from the reasoning steps
What we know about CoT reasoning:

- Answers are indeed derived from the reasoning steps
- Most individual reasoning steps are strictly-valid
Summary

What we know about CoT reasoning:

- Answers are indeed derived from the reasoning steps
- Most individual reasoning steps are strictly-valid
- Models struggle with proof planning: it does not systematically explore different branches when multiple valid steps are available
What we know about CoT reasoning:

- Answers are indeed derived from the reasoning steps
- Most individual reasoning steps are strictly-valid
- Models struggle with proof planning: it does not systematically explore different branches when multiple valid steps are available
 - (Self-consistency and DFS demonstrations didn’t improve it.)