

Introduction

- Imitation learning by classification
- DAgger [1]: iterative policy training via a reduction to online learning
- Coaching (new): update towards easy-to-learn intermediate actions when the oracle is too good to imitate
- Experiments on test-time cost-sensitive dynamic feature selection

Imitation Learning by Classification

- Markov Decision Process
- ► state $s \in S$, action $a \in A$, policy $\pi : S \rightarrow A$
- d_{π} : average distribution of states over T steps
- ▶ immediate loss $L(s, a) \in [0, 1]$, expected loss $J(\pi) = T\mathbb{E}_{s\sim d_{\pi}}[L(s, \pi(s))]$
- ► Oracle action: $\pi^*(s) = \arg \min C(s, a)$
- C(s, a): oracle's measure of the quality of a in s
- \blacktriangleright Goal: minimize the task loss $J(\pi) \rightarrow$ minimize a local regret ℓ
- ▶ Policy as a multiclass classifier: $\hat{\pi} = \arg \min \mathbb{E}_{s \sim d_{\pi^*}}[\ell(\pi(s), \pi^*(s))]$

Dataset Aggregation (DAgger)

Problems with the classification approach

- Different distributions of states at training and test time
- Learner may go to states never visited by oracle
- Quadratic loss: Let $\mathbb{E}_{s_{\sim}d_{\pi^*}}[\ell(\pi(s), \pi^*(s))] = \epsilon$, then $J(\pi) \leq J(\pi^*) + T^2 \epsilon$

Iterative policy training

- Execute the most recently trained policy
- Retrain classifier on all states ever encountered
- Teaches learner how to recover from past mistakes
- Supervised action at states $s = \pi^*(s)$

Theoretical guarantee

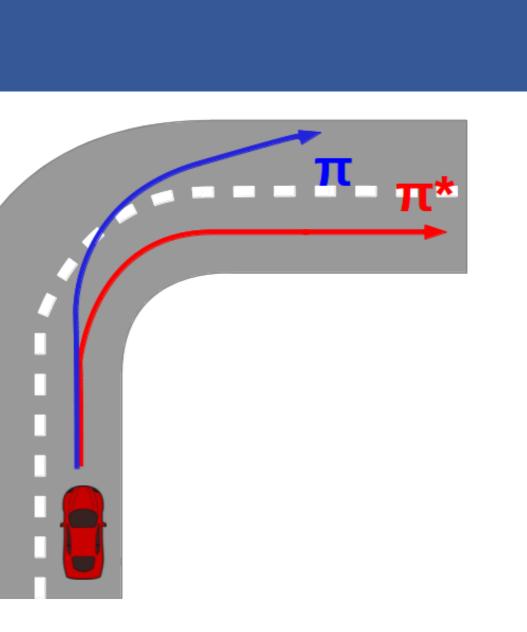
- \triangleright $Q_t^{\pi'}(s,\pi)$: t-step loss of executing π in the initial state and then running π'
- Test-time surrogate loss: $\mathbb{E}_{s \sim d_{\pi}}[\ell(\pi(s), \pi^*(s))] = \epsilon$
- ► General case: If $Q_{T-t+1}^{\pi^*}(s,\pi) Q_{T-t+1}^{\pi^*}(s,\pi^*) \leq u$ for all actions a, $t \in \{1, 2, ..., T\}$, then $J(\pi) \leq J(\pi^*) + uT\epsilon$.

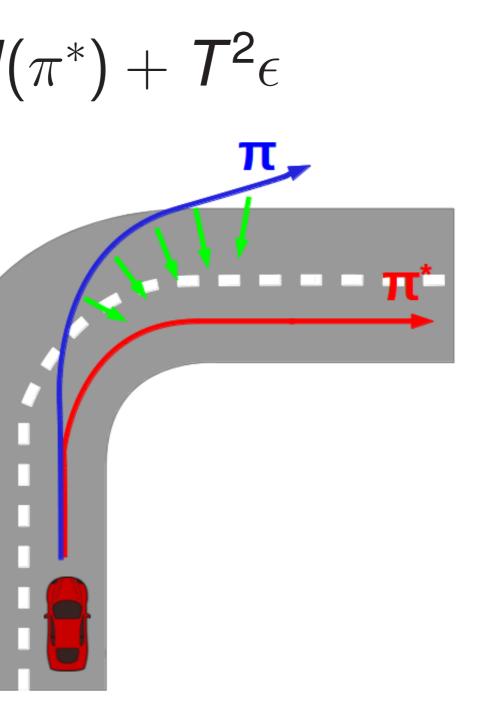
DAgger:

N iterations, $\pi_1, \pi_2, \ldots, \pi_N$ denoted by $\pi_{1:N}$ Error of best policy in hindsight: $\epsilon_N = \min_{\pi \in \Pi N} \sum_{i=1}^N \mathbb{E}_{s \sim d_{\pi_i}}[\ell(\pi(s), \pi^*(s))]$ If N is $O(uT \log T)$ and $Q_{T-t+1}^{\pi^*}(s,\pi) - Q_{T-t+1}^{\pi^*}(s,\pi^*) \le u$, there exists a policy $\pi \in \pi_{1:N}$ s.t. $J(\pi) \leq J(\pi^*) + uT\epsilon_N + O(1)$.

Imitation Learning by Coaching

He He¹, Hal Daumé III¹ and Jason Eisner²





Coaching

A too-good-to-learn oracle

- Information not inferable from the state limited learning resources
- Policy space far from the learning policy space limited learning ability
- Large training error in each iteration and large ϵ_N

Coach

- Easy-to-learn actions: scored high by the learner's current policy
- Good actions: low task loss
- Hope action: not much worse than the oracle action but easier to achieve

 λ : specifying how close the coach is to the oracle $\tilde{\pi}_i(s) = \arg \max \lambda \cdot \operatorname{score}_{\pi_i}(s, a) - C(s, a)$

DAgger by coaching

Initialize $\mathcal{D} \leftarrow \emptyset, \pi_1 \leftarrow \pi^*$

for i = 1 to N do

Sample *T*-step trajectories using π_i

Collect coaching dataset $\mathcal{D}_i = \{(s_{\pi_i}, \tilde{\pi})\}$ Aggregate datasets $\mathcal{D} \leftarrow \mathcal{D} \mid \mathcal{D}_i$ and end for

Return best π_i evaluated on validation set

Theory

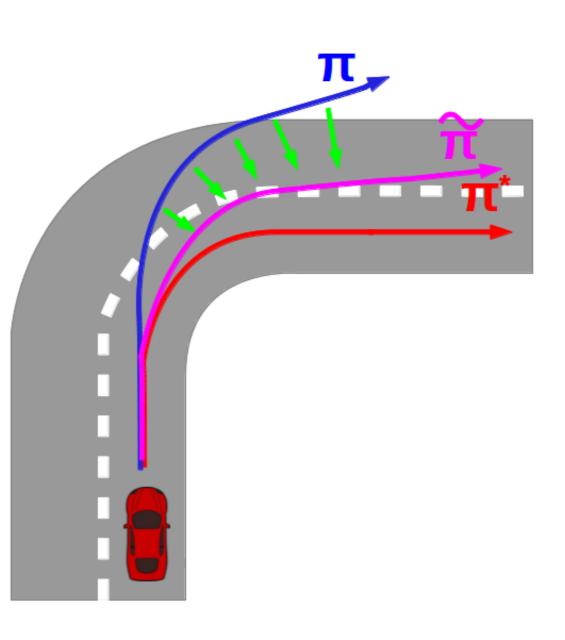
Reduction to online learning

- Treat trajectories collected in each iteration as one online-learning example Choose the best policy so far: Follow-The-Leader
- No-regret online learning algorithm:
- $\frac{1}{N}\sum_{i=1}^{N}\ell_i(\pi_i) \min_{\pi \in \Pi} \frac{1}{N}\sum_{i=1}^{N}\ell_i(\pi) \leq \gamma_N \text{ and } \lim_{N \to \infty} \gamma_N = 0$ DAgger theoretical guarantee holds under any no-regret algorithm

Coaching guarantee

- ► Test-time loss: $\tilde{\ell}_i(\pi) = \mathbb{E}_{s \sim d_{\pi_i}}[\ell(\pi(s), \tilde{\pi}_i(s))]$ For row First policy in hindsight w.r.t. hope actions: $\tilde{\epsilon}_N = \frac{1}{N} \min_{\pi \in \Pi} \sum_{i=1}^N \tilde{\ell}_i(\pi)$
- Linear policy: predicted action $\hat{a}_{\pi,s} = \arg \max \mathbf{w}^T \phi(\mathbf{s}, \mathbf{a})$ hope action $\tilde{a}_{\pi,s} = \arg \max \lambda w^T \phi(s, a) - L(s, a)$
- For DAgger with coaching, if N is $O(uT \log T)$ and $Q_{T-t+1}^{\pi^*}(s,\pi) - Q_{T-t+1}^{\pi^*}(s,\pi^*) \le u$, there exists a policy $\pi \in \pi_{1:N}$ s.t. $J(\pi) \leq J(\pi^*) + uT\tilde{\epsilon}_N + O(1).$

¹University of Maryland, College Park ²Johns Hopkins University



$$\{ f_i(s) \}$$

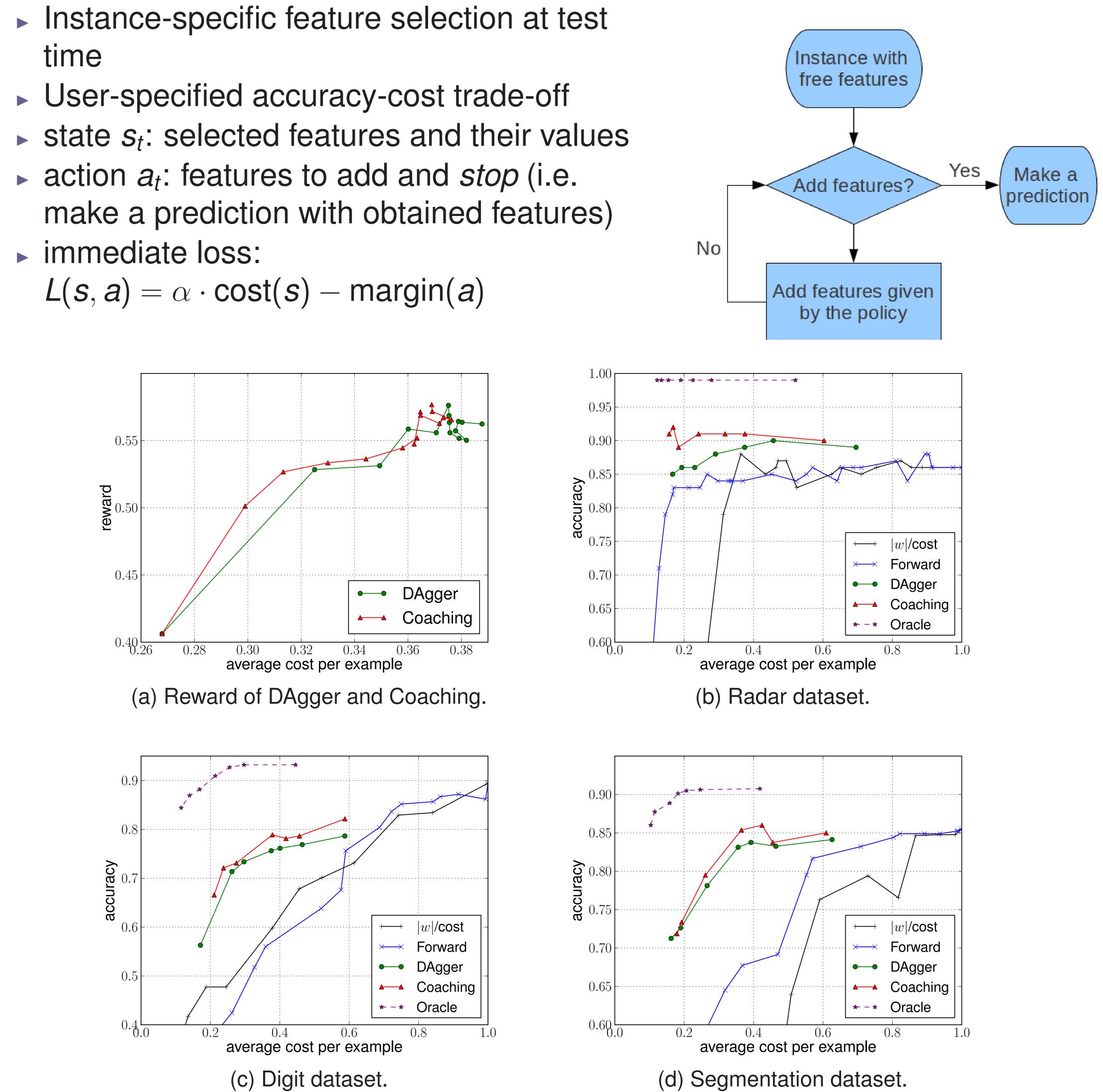
train policy π_{i+1} on \mathcal{D}

Experimental Results

Dynamic feature selection

- time

- immediate loss:



Conclusion and Future Work

Reference

In *AISTATS*, 2011.

Coaching: target at easier goals first and gradually approach the oracle Application in natural language processing and computer vision Relate to regularized methods in online convex optimization

[1] Stéphane. Ross, Geoffrey J. Gordon, and J. Andrew. Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning.