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Introduction
I Imitation learning by classification
I DAgger [1]: iterative policy training via a reduction to online learning
I Coaching (new): update towards easy-to-learn intermediate actions when

the oracle is too good to imitate
I Experiments on test-time cost-sensitive dynamic feature selection

Imitation Learning by Classification

I Markov Decision Process
I state s ∈ S, action a ∈ A, policy π : S → A
I dπ: average distribution of states over T steps
I immediate loss L(s,a) ∈ [0,1], expected loss

J(π) = TEs∼dπ[L(s, π(s))]
I Oracle action: π∗(s) = arg min

a∈A
C(s,a)

C(s,a): oracle’s measure of the quality of a in s
I Goal: minimize the task loss J(π)→ minimize a local regret `
I Policy as a multiclass classifier: π̂ = arg min

π∈Π
Es∼dπ∗[`(π(s), π∗(s))]

Dataset Aggregation (DAgger)

Problems with the classification approach
I Different distributions of states at training and test time
I Learner may go to states never visited by oracle
I Quadratic loss: Let Es∼dπ∗[`(π(s), π∗(s))] = ε, then J(π) ≤ J(π∗) + T 2ε

Iterative policy training
I Execute the most recently trained policy
I Retrain classifier on all states ever encountered

I Teaches learner how to recover from past
mistakes

I Supervised action at states s = π∗(s)

Theoretical guarantee
I Qπ′

t (s, π): t-step loss of executing π in the initial state and then running π′

I Test-time surrogate loss: Es∼dπ[`(π(s), π∗(s))] = ε
I General case: If Qπ∗

T−t+1(s, π)−Qπ∗
T−t+1(s, π∗) ≤ u for all actions a,

t ∈ {1,2, . . . ,T}, then J(π) ≤ J(π∗) + uT ε.
I DAgger:

N iterations, π1, π2, . . . , πN denoted by π1:N
Error of best policy in hindsight: εN = minπ∈Π

1
N

∑N
i=1 Es∼dπi

[`(π(s), π∗(s))]

If N is O(uT log T ) and Qπ∗
T−t+1(s, π)−Qπ∗

T−t+1(s, π∗) ≤ u, there exists a policy
π ∈ π1:N s.t. J(π) ≤ J(π∗) + uT εN + O(1).

Coaching
A too-good-to-learn oracle
I Policy space far from the learning policy space – limited learning ability
I Information not inferable from the state – limited learning resources
I Large training error in each iteration and large εN

Coach
I Easy-to-learn actions: scored high by the learner’s

current policy
I Good actions: low task loss
I Hope action: not much worse than the oracle action

but easier to achieve
λ: specifying how close the coach is to the oracle
π̃i(s) = arg max

a∈A
λ · scoreπi(s,a)− C(s,a)

DAgger by coaching
Initialize D ← ∅, π1← π∗

for i = 1 to N do
Sample T -step trajectories using πi
Collect coaching dataset Di = {(sπi, π̃i(s)}
Aggregate datasets D ← D⋃Di and train policy πi+1 on D

end for
Return best πi evaluated on validation set

Theory
Reduction to online learning
I Treat trajectories collected in each iteration as one online-learning example
I Choose the best policy so far: Follow-The-Leader
I No-regret online learning algorithm:

1
N

∑N
i=1 `i(πi)−minπ∈Π

1
N

∑N
i=1 `i(π) ≤ γN and limN→∞ γN = 0

I DAgger theoretical guarantee holds under any no-regret algorithm
Coaching guarantee
I Test-time loss: ˜̀i(π) = Es∼dπi

[`(π(s), π̃i(s))]

I Error of best policy in hindsight w.r.t. hope actions: ε̃N = 1
N minπ∈Π

∑N
i=1

˜̀i(π)
I Linear policy:

predicted action âπ,s = arg max
a∈A

wTφ(s,a)

hope action ãπ,s = arg max
a∈A

λwTφ(s,a)− L(s,a)

I For DAgger with coaching, if N is O(uT log T ) and
Qπ∗

T−t+1(s, π)−Qπ∗
T−t+1(s, π∗) ≤ u, there exists a policy π ∈ π1:N s.t.

J(π) ≤ J(π∗) + uT ε̃N + O(1).

Experimental Results
Dynamic feature selection
I Instance-specific feature selection at test

time
I User-specified accuracy-cost trade-off
I state st: selected features and their values
I action at: features to add and stop (i.e.

make a prediction with obtained features)
I immediate loss:

L(s,a) = α · cost(s)−margin(a)
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(a) Reward of DAgger and Coaching.
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(b) Radar dataset.
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(c) Digit dataset.
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(d) Segmentation dataset.

Conclusion and Future Work
I Coaching: target at easier goals first and gradually approach the oracle
I Application in natural language processing and computer vision
I Relate to regularized methods in online convex optimization
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