Active Information Acquisition

He He Paul Mineiro & Nikos Karampatziakis

Overview

- Adaptive: selection of next information depends on past information and intermediate predictions
- Cost-efficient: stop and output results as soon as enough information has been acquired

Problem formulation

- State: information acquired so far and intermediate predictions
- Action: get a new piece of information or stop (and output current prediction)
- **Loss**: task loss + λ · information cost

TL;DR

- When to stop: sentiment classification on Amazon book reviews
- Read a review from the beginning; 2 actions (stop and continue)
- Task predictor: bag-of-words; one-against-all (5 classes)

Being dynamic is better

University of Maryland, College Park Microsoft Cloud and Information Services Lab

Spend more on hard problems!

Method

Our goal is to learn

 Task predictor: takes in partial input, outputs (intermediate) prediction • Information selector: takes in a state representation, outputs the next action Learning to Search (Daumé III et al, 2014)

 An imitation learning framework via online cost-sensitive classification • Explore by rolling in with learned policy; assign credit by rolling out with the reference policy • Reference policy: greedily choose the next action that yields the minimum immediate loss Jointly learn the task predictor and the information selector

TB;DL

• Where to focus: image recognition on PASCAL VOC 2011 • Divide an image into 5x5 patches; reveal one patch at a time; 26 actions (patch ID and stop) • Patch aggregation: linear logistic regression using patch features from last layer of CNN • Baseline: heuristically selected patches (going from middle to outer part)

