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Abstract

In this paper we address the problem of producing a
high-resolution image from a single low-resolution image
without any external training set. We propose a framework
for both magnification and deblurring using only the orig-
inal low-resolution image and its blurred version. In our
method, each pixel is predicted by its neighbors through
the Gaussian process regression. We show that when us-
ing a proper covariance function, the Gaussian process
regression can perform soft clustering of pixels based on
their local structures. We further demonstrate that our
can extract adequate information contained in a single
low-resolution image to generate a high-resolution image
with sharp edges, which is comparable to or even superior
in quality to the performance of other edge-directed and
example-based super-resolution algorithms. Experimental
results also show that our approach maintains high-quality
performance at large magnifications.

1. Introduction
The goal of super-resolution (SR) is to estimate a high-

resolution (HR) image from one or a set of low-resolution
(LR) images. This inverse problem is inherently ill-posed
since many HR images can produce the same LR image.
SR methods can be broadly categorized into three classes
as in [19]: interpolation-based methods, learning-based
methods and reconstruction-based methods. Interpolation-
based methods (e.g., [9, 13, 21] are fast but the results
are lack of fine details. Reconstruction based methods
(e.g., [2, 11, 15, 18, 10]) apply various smoothness pri-
ors (e.g., [1, 5, 19]) and impose the constraint that when
properly downsampled, the HR image should reproduce the
original LR image. Alternatively, in learning-based meth-
ods (e.g., [14, 7, 4, 22]), detailed textures are hallucinated
by searching through a training set of LR/HR image or
patch pairs. However, note that the training images need
to be carefully selected, otherwise unexpected details can
be found [6, 12].

Figure 1. (Adapted from [17]) Graphical model of GP regression
for image SR. Squares show the observed pixels and circles repre-
sent the unknown Gaussian field. Inputs are neighbors (predictors)
of the target pixel which is at the center of each 3 × 3 patch. The
thick horizontal line represents a set of fully connected nodes.

In this paper we emphasize on super-resolution using
only the LR input image without any external dataset or
exemplar image. Previously, Fattal [6] proposed an up-
sampling method based on a unique relationship between
the gradient fields of LR and HR images. Subsequently,
Sun et al. used the Gradient Profile Prior [19] learned from
a large number of natural images to obtain sharp edges at
large magnifications. Glasner et al. [8] exploited the recur-
rence of patches and constructed LR/HR training pairs by
searching through an image pyramid.

Our contribution is two-fold. Firstly, we propose a
framework to learn the reverse mapping from a LR image
to the corresponding HR image pixelwise, relying on lo-
cal structures defined by each pixel’s neighborhood. Pixels
in the HR image are first estimated by their nearest neigh-
bors (regressors) in an initial upsampled image via Gaussian
process regression (GPR). The result is then deblurred by
learning from LR/HR patches obtained from its downsam-
pled version and the LR input. This self-directed learning
is ready to be extended to image deblurring and denoising
as well. Secondly, we demonstrate that GPR can serve as
a soft clustering method for pixels based on the similarity
defined by its covariance function. Thus it could also be
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used in other SR algorithms to replace the nearest-neighbor
based search. In our case, the covariance function enforces
that a pixel is mainly estimated from training pixels em-
bedded in similar environments, which results in significant
improvement for edge recovery.

In the rest of this paper, we first state our motivation in
Section 2. Then we give a brief overview of GPR in Section
3. In Section 4, we describe our algorithm and give justifi-
cations. Section 5 presents our results and the comparison
to those produced by other methods. Finally, we conclude
the paper with some discussion and future developments of
the proposed algorithm.

2. Motivation

Our work is driven by the observation of structural re-
dundancy in natural images. Previously, this self-similarity
property has been exploited in image denoising by Non-
Local Means [3], which was later generalized to a regular-
ization method for inverse problems in [16]. Recently, it has
been statistically shown in [8] that small patches (e.g., 5×5)
of edges, corners and textures tend to recur both within and
across image scales. In our case, the similarity between two
pixels is defined as the difference between their local ge-
ometrical structures. For instance, pixels along the same
edge tend to have similar neighborhoods whose intensities
change fast in the direction perpendicular to that of the edge.
Likewise, pixels in a smooth region have relatively invariant
intensities within the neighborhood. Therefore, neighbors
of a pixel indicate the local feature it is embedded in and
can be used for prediction in a regression-based model.

GPR provides an elegant non-parametric Bayesian ap-
proach for inference in the function space directly. By en-
coding the high-level information that pixels having sim-
ilar neighborhoods are strongly correlated, we essentially
predict the target pixel from training examples whose local
structures are similar to it (see Section 4.2). Due to the ge-
ometric duality [13] between LR and HR images, the input
LR image serves as a sufficient training dataset for extract-
ing the local structural information.

3. Gaussian Process Regression

Gaussian Process (GP) defines a distribution over func-
tion f , where f is a mapping from the input space X to R,
such that for any finite subset of X , its marginal distribution
P (f(x1), f(x2), ...f(xn)) is a multivariate normal distri-
bution, where x an input vector. In this section we give a
brief review of GPR for implementation purpose; further
details can be found in [17].

Gaussian Process is parameterized by its mean function
m(x) and covariance function k(xi,xj) such that

f |X ∼ N (m(x),K(X,X)) (1)

or equivalently,

f(x) ∼ GP(m(x), k(xi,xj)). (2)

where rows of the design matrix X are input vectors, f is a
vector of function values and K(X,X) denotes the n by n
matrix of covariances such that Kij = k(xi,xj).

In GPR we impose a GP prior on the target function
value. Let y denote one observation with Gaussian noise
ε and we have the GPR model

y = f(x) + ε, ε ∼ N (0, σ2
n). (3)

The joint distribution of the training outputs y and the test
outputs f∗ with a zero mean function is[

y
f∗

]
∼ N

(
0,

[
K(X,X)) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
,

(4)
where X and X∗ are design matrices for training data and
test data respectively. Conditioning f∗ on the observation y,
we can derive the predictive distribution

f∗|X,y,X∗ ∼ N (f̄∗, V (f∗)), where (5)

f̄∗ = K(X∗,X)[K(X,X) + σ2
nI]
−1y, (6)

V (f∗) = K(X∗,X∗)−
K(X∗,X)[K(X,X) + σ2

nI]
−1K(X,X∗). (7)

The notation K(X∗,X), K(X,X∗), K(X∗,X∗) for ma-
trices of covariances are similar to the previous notation
K(X,X).

Equation 6 shows that the mean prediction is a linear
combination of the noisy observation y. Generally, GPR
encodes the assumption that close inputs are likely to give
similar outputs, hence examples similar to the test point are
assigned higher weights. By specifying a proper covari-
ance function, we can define the similarity based on domain
knowledge.

4. GPR for Super-resolution
In our regression-based framework, patches from the HR

image are predicted pixelwise by corresponding patches
from the LR image (Section 4.1). GPR provides a way for
soft-clustering of the pixels based on the local structures
they are embedded in (Section 4.2). Given the intuitive in-
terpretation of hyperparameters of the covariance function
in our case, we can optimize their values through marginal
likelihood maximization (Section 4.3).

4.1. Single Image SR

Figure 1 shows a chain graph representation of GPR for
image SR in our setting, where each 3 × 3 patch from the
input image forms a predictor-target training pair. Thus in
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(a) Training targets (b) Neighbors (c) Blurred HR patch

(d) Training targets (e) Neighbors (f) Deblurred HR patch

Figure 2. Single image SR framework. (a) and (d) are input LR
patches, in which the crossed points are target pixels for training
produced by simple grid sampling. (b) is the same patch as (a),
where neighbors are taken as the intensity values of the crossed
points’ surrounding pixels. (e) is obtained by blurring and down-
sampling (c), the output of stage one. Neighbors are taken in the
same way as in stage one from (e). (f) shows the deblurred result
of the second stage.

Equation 3, the observed y is the intensity of the pixel at the
center of a 3× 3 patch and x is an eight-dimensional vector
of its surrounding neighbors. In order to adapt to different
regions of the image, it is partitioned into fixed-sized and
overlapped patches (e.g., 30× 30), and the algorithm is run
on each of them separately. The patch-based results are then
combined to give the whole HR image.

We predict the HR image using a two-stage coarse-to-
fine approach, which is consistent with the image formation
process. As shown in [2, 18], the imaging process can be
modeled as a degradation process of the continuous spatial
domain depending on the camera’s Point Spread Function
(PSF). After discretization, this process can be further ex-
pressed as

L = (f ∗H) ↓d, or equivalently, (8)
H̃ = f ∗H and L = H̃ ↓d (9)

where L and H denote the LR and HR image respectively,
H̃ denotes the blurred HR image, f is the blur kernel and ↓d
denotes the downsampling operator with a scaling factor d.
As a reasonable inversion of the degradation process, in the
first stage we intend to upsample the LR image without loss
of details and obtain H̃ . In the second stage we use L and
its blurred version L̃ (downsampled from H̃) to simulate
the blurring process, thus refine the estimates to recover H .
The above ideas can be implemented by Algorithm 1.

Figure 2 gives a real example of the resolving process.
Figure 2(a), 2(b) and 2(c) show the first stage, where both
the training targets sampled in Figure 2(a) and their neigh-

Algorithm: SRGPR(L)
H̃ ← Upsample(L)

L̃← H̃ ↓d (Blur and downsample)
H ← Deblur(H̃, L, L̃)
return H

Function: Upsample (L)
Bicubic interpolation: Hb ← L ↑d
Partition L into n overlapped patches P1, ..., Pn

for pL = P1, ..., Pn do
Sample pixels in pL to obtain the target vector y
Put the eight neighbors of each element of y in
XNL as a row vector for training
Train a GPR model M using {y, XNL}
Put the eight neighbors of each pixel of Hb in
XNHb

as a row vector for prediction
pH̃ ←M(XNHb

)

end
return H̃ constructed from pH̃

Function: Deblur (H̃, L, L̃)
Partition L̃ into n overlapped patches P1, ..., Pn

corresponding to those in L
for pL̃ = P1, ..., Pn do

Obtain the same target vector y in pL
Put the eight neighbors in pL̃ of each element of
y in XNL̃ as a row vector for training
Train a GPR model M using {y, XNL̃}
Put the eight neighbors of each pixel of H̃ in
XNH̃ as a row vector for prediction
pH ←M(XNH̃)

end
return H constructed from pH

Algorithm 1: Super-resolution using GPR.

bors in Figure 2(b) come from the LR input patch. Neigh-
bors for predicting pixels in the HR image are obtained by
upsampling Figure 2(a) using bicubic interpolation. Fig-
ure 2(d), 2(e) and 2(f) show the second stage, where the
training targets 2(d) are the same as those in the first stage,
while the neighbors come from the blurred patch (Fig-
ure 2(e)). Figure 2(f), the deblurred result shows sharper
edges than Figure 2(c) from stage one.

4.2. Covariance Functions

The covariance function plays the central role in GPR
as it encodes our assumptions about the underlying process
by defining the similarity between functions. We model the
image as a locally stationary Gaussian Process and choose
the squared exponential covariance function:

k(xi,xj) = σ2
f exp

(
−1

2

(xi − xj)
′(xi − xj)

`2

)
, (10)
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(a) Test point (b) Training patch (c) Matrix of Covari-
ances

Figure 3. Covariance Function. (b) is a patch from the LR input
image and (a) is its corresponding patch from the upsampled image
(bicubic interpolation). The crossed point in (a) is a test point x∗ to
be estimated from the traning set X in (b). (c) shows its covariance
matrix, where each pixel’s intensity value is proportional to the
covariance between x∗ and the training target at the same location
in (b), evaluated by the covariance function, Equation 10

.

where σ2
f represents the signal variance and ` defines the

characteristic length scale. Therefore, in our case similar-
ity is based on the Euclidean distance between two vectors
of the eight neighboring pixels’ intensities, since the differ-
ence of intensity values around the target pixel indicates its
location (e.g. edges or smooth regions) and the direction of
the edge if it is an edge-pixel.

Figure 3(c) shows the matrix of covariances K for one
edge pixel x∗ (the crossed point) in Figure 3(a) predicted
by training points X in the LR training patch, where Kij =
k(x∗,Xij) and i, j correspond to pixel indices in Fig-
ure 3(b). Observe that high responses (red regions) from
the training patch are largely concentrated on edges, which
justifies our choice of the covariance function. In addition,
it is noted that high-responsive regions do not only include
points on the same edge as the test point, but also other sim-
ilar edges within the patch. Thus, the process can capture
both local and global similarity within a patch. In general,
pixels embedded in a similar structure to that of the tar-
get pixel in terms of the neighborhood tend to have higher
weights during prediction.

4.3. Hyperparameter Adaptation

So far, we have taken the parameter values in the co-
variance function to be given. Here we explore the effect
of varying these hyperparameters and illustrate how to set
them through optimization.

In Bayesian statistics, hyperparameters refer to parame-
ters in the prior distribution, which in our case are the sig-
nal variance, σ2

f , the characteristic length scale, ` in Equa-
tion 10 and the noise variance, σ2

n in Equation 3. While sig-
nal variance and noise variance are relatively self-explicit,
the characteristic length scale can be regarded as parame-
ters controlling the number of upcrossings of a level u in
a one-dimensional GP. Assuming a zero mean function, it
is shown in [17] that the characteristic length scale is in-

(a) Test point (b) Training patch (c) ` = .50, σn = .01

(d) ` = .05, σn = .001 (e) ` = 1.65, σn = .14

Figure 4. Hyperparameter adaptation. (a) is the upsampled patch
(bicubic interpolation) used for prediction. (b) is the original low-
resolution patch used for training. (c) to (e) show the contour plots
of the weight matrix given the hyperparameters listed below each
image. The hyperparameters used in (c) is obtained by marginal
likelihood maximization while the other two sets of hyperparame-
ters are chosen by hand for comparison. The signal variance σ2

f is
fixed as 0.162 for all three settings.

versely proportional to the mean number of level-zero up-
crossings, given the squared exponential covariance func-
tion.

Figure 4 gives an interpretation of the hyperparameters
in terms of the weighted linear combination of training tar-
gets, y, in Equation 6. Figure 4(a) and Figure 4(b) are the
upsampled patch (bicubic interpolation) and the LR input
patch respectively. To predict the crossed point as shown
in Figure 4(a), we use the mean of the predictive distri-
bution (Equation 6). Let the n by 1 weight vector w be
K(X∗,X)[K(X,X) + σ2

nI]
−1. The linear predictor can

then be written as wTy. We reshape the vector w into a
square matrix W and plot its contour. Each of W ’s en-
try is the weight of a corresponding training point in Fig-
ure 4(b). The signal variance is set by optimization of the
marginal likelihood (further explained in subsequent para-
graphs), which is the same in all three settings. In Fig-
ure 4(c), the hyperparameters are obtained by maximizing
the marginal likelihood. Figure 4(d) shows the effect of a
shorter length scale with low noise and Figure 4(e) shows
the result of a longer length scale with high noise. We can
see that in Figure 4(d) the contour map has several peaks, in-
dicating a small number of highly correlated training points.
In contrast, the longer length scale in Figure 4(e) over-
smoothes the signal and results in large high-responsive re-
gions. Generally, this phenomenon stands for two possi-
ble views of a given signal: the former model assumes a
quickly-varying field and fits to high-frequency details that
could be noise; the latter model assumes a slowly-varying
field thus some observed genuine data could be ignored. A
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non-optimal solution either results in high-frequency arti-
facts in the image or a blurry image.

In Bayesian model selection, we usually use hierarchical
models and impose a hyper-prior p(θ|H) over the hyperpa-
rameters θ. Then the posterior can be expressed as follows:

p(θ|X,y,H) = p(y|X,θ,H)p(θ|H)∫
p(y|X,θ,H)p(θ|H)dθ

. (11)

Depending on the model, the evaluation of the normaliz-
ing constant in Equation 11 may be intractable, thus calls
for variational methods to approximate or Markov chain
Monte Carlo (MCMC) methods to sample from the poste-
rior. Alternatively, in the context of image SR we can take
advantage of the above intuitive interpretation of the hyper-
parameters and solve the problem through marginal likeli-
hood maximization.

In our model, the marginal likelihood is

p(y|X) =

∫
p(y|f ,X)p(f |X)df (12)

Given the likelihood y|f ∼ N (f , σ2
nI) (Equation 3) and the

GP prior over the latent function f (Equation 1), this integral
can be analytically solved, giving rise to the log marginal
likelihood

log p(y|X,θ) = −1

2
yTK−1y y − 1

2
log|Ky| −

n

2
log 2π,

(13)
where Ky = K(X,X) + σ2

nI , representing the covariance
matrix of the noisy observation y. The optimal solution
θ∗ can be obtained by gradient descent with the following
partial derivative

∂L
∂θi

=
1

2
yTK−1

∂K

∂θi
K−1y − 1

2
tr(K−1

∂K

∂θi
), (14)

where L refers to the above log marginal likelihood. In our
experiments, satisfactory results can be obtained by initial-
izing ` at 0.223, σn at 0.05 and σ2

f to be the variance of the
training targets.

We conclude this section by giving the following ad-
vantages of our patch-based GP regression for image SR.
Firstly, recurring patterns (3 × 3 neighborhood) in the LR
patch can be captured for efficient training. Secondly, dif-
ferent image regions (e.g., 30× 30 patches) can have a cus-
tomized set of hyperparameters to adapt to its global char-
acteristics. Lastly, theO(N3) time complexity is reduced to
O(Mn3), where M is the number of patches which grows
linearly with the image size N and n is the number of train-
ing points in one patch which is a constant.

5. Experiments
Implementation: We test our method on a variety of

images with a magnification factor from 2 to 10. In most

(a) GPP (b) Our result

Figure 6. Super-resolution (8×) comparison of Gradient Profile
Prior (GPP) reconstruction [19] and our methods.

(a) 10× our result (b) 10× detail synthesis

Figure 7. Super-resolution result of direct magnification (3×) and
10× comparison with the result from [20].

of our experiments we began by using the original image
as LR input and magnify it with a scale factor of 2. For
further magnification, we used the previous output image as
the input LR image and solved its HR image. In the second
stage of our method, we made use of the original LR image
for deblurring, which also serves as a constraint that when
downsampled, the HR image should reproduce the LR im-
age. We set the patch size to 20 × 20 for the original LR
image and increase it according to the magnification factor
in later magnifications. For each patch, approximately 2/3
area is overlapped with neighboring patches. After running
our algorithm on each patch, we combined them by linear
smoothing in the overlapping areas. When processing color
images, we worked in the YIQ color space and only applied
our SR method to the illuminance (Y) channel since hu-
mans are more sensitive to illuminance changes. The other
two chrominance channels (I and Q) are simply upsampled
using bicubic interpolation. The three channels were then
combined to form our final HR image.

Results: In Figure 5, we compare our method with the
bicubic interpolation and the Gradient Profile Prior recon-
struction [19]. The bicubic interpolation introduces ringing
and jaggy artifacts, for example along edges on the wing
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(a) Bicubic (MSSIM=0.84) (b) GPP (MSSIM=0.84) (c) Our result (MSSIM=0.86) (d) Ground truth

Figure 5. Super-resolution (3×) comparison of bicubic interpolation, Gradient Profile Prior (GPP) reconstruction [19] and our methods.
The MSSIM scores with respect to the ground truth are listed below each result.

(a) Bicubic (b) Imposed edge statistics (c) Patch redundancy (d) Our result

Figure 8. Super-resolution (4×) comparison of bicubic interpolation, reconstruction with imposed edge statistics [6], single image super-
resolution using redundant patches across scales [8] and our method.

(region in the blue-bordered rectangle). The GPP recon-
struction alleviates the artifacts yet the overall result is still
blurry, as shown in the red-bordered rectangle. Our re-
sult generates sharp edges with rare artifacts and is most
close to the ground truth, in terms of both subjective visual
evaluation and the Mean Structural Similarity (MSSIM) in-
dex [23], which assesses the image quality from the per-
spective of image formation. Figure 6 further shows a com-

parison between GPP [19] and our methods under 8× mag-
nification. In the enlarged rectangle region, we can see that
the result of GPP is less realistic while our result shows
clear carved curve of the eye.

To further inspect the effectiveness of our method, we
show a comparison of our large 10× SR result to that of
the single image detail synthesis with edge prior method
from [20] in Figure 7(a) and Figure 7(b). With the exam-
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ple texture, the detail synthesis approach can produce real-
istic details which are usually lost under large magnifica-
tion. Our results, however, demonstrate comparable quality
in terms of the sharpness of edges, for example in regions
of the antennae and the head.

Figure 8 compares our method with bicubic interpo-
lation, the imposed edge statistics approach [6] and the
single image SR approach using patch redundancy across
scales [8]. The image of the old man’s face has vari-
ous edges of different scales. The imposed edge statistics
method produces some unrealistic edges as in the case of
Figure 6(a). For instance, the forehead wrinkles show lin-
eation effect. In the image of the chip connector, the long
edge of the side is approximately constructed by only one
pixel in the input LR image. Both the imposed edge statis-
tics approach and the single image SR approach have stair-
case or ringing artifacts along the major edge. By capturing
the pixels’ local structures and searching similar predictors
globally in a patch, our method produces sharp edges with
the least artifacts.

Figure 9 shows more results using our method. Images
on the left are LR inputs shown by nearest-neighbor interpo-
lation and images on the right are HR images with a mag-
nification factor of 8. The results show that our method
can produce sharp edges reliably at high magnification fac-
tors. In Table 6 we give objective measurements (RMS and
MSSIM [23]) to evaluate our method in comparison to bicu-
bic interpolation and New Edge Directed Interpolation [13]
(NEDI). We notice that the performance of NEDI deterio-
rates fast when the magnification factor is larger than 2. The
measurement shows that our method outperforms bicubic
interpolation and NEDI with lower RMS error and higher
MSSIM index.

Noisy input: In Figure 10, we demonstrate that our SR
method is resistant to minor noise in the input LR image.
For noisy input, we set σn according to the noise level in
the LR image and optimize σf and ` by marginal likelihood
maximization, such that the model can correctly interpret
noisy signals. We can see that in Figure 10(b), most of the
noise are smoothed out.

6. Discussions and Conclusions
In this paper we present a novel method for single image

super-resolution. Instead of imposing sophisticated edge
priors as in [6, 19], we use a simple but effective covariance
function to capture the local structure of each pixel through
the Gaussian process regression. In addition, by using a
non-parametric Bayesian model, the prediction process is
able to adapt to different edges in the local image patch
instead of setting a general parameter learnt from a large
number of images. The experimental results show that our
method can produce sharp edges with minimal artifacts. We
propose a two-stage framework, where the first stage aims

(a) Input (b) Our results

Figure 9. More Super-resolution (8×) results.

to recover an HR image based on the structural information
extracted from the LR image and the second stage intends
to refine the obtained HR image by learning from a training
set constructed by the LR image itself. Our results capture
most of the details presented in the LR image and the visual
quality is comparable to some example-based methods (see
Figure 7(a)).

Though presented in the context of super-resolution, our
framework of self-directed learning can be extended to
other image reconstruction scenarios such as denoising and
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(a) Noisy LR input (b) Our result

Figure 10. Super-resolution (3×) result of noisy low-resolution
image.

Image RMS MSSIM
BC NEDI Our BC NEDI Our

Lena 10.25 11.12 9.65 0.80 0.79 0.82
Daisy 18.21 17.99 17.02 0.83 0.83 0.85
Tower 10.69 11.69 9.68 0.76 0.75 0.79

Table 1. RMS errors and MSSIM scores of different super-
resolution (4×) methods. BC stands for bicubic interpolation.
NEDI stands for new edge-directed interpolation [13].

deblurring by modifying the covariance function and the
training pairs. Finally, the performance may be further im-
proved through using more complex covariance function to
include extracted features and to express explicitly the local
structure of a pixel.
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